Structural chemistry of organotin ferrocenecarboxylic esters II. The crystal structure of dibutylin ferrocenecarboxyliate oxide

Jiaxun Tao ${ }^{\text {a, }}$, Wenjing Xiao ${ }^{\text {a }}$, Qingchuan Yang ${ }^{\text {b }}$
${ }^{1}$ Deparment of Chemistry. Tsinghua Unirersity, Beijing 100084, People's Republic of China
${ }^{\text {b }}$ Department of Chemistry. Peking Unirersity, Beijing 100871. People's Republic of China

Received 24 July 1996; revised 14 August 1996

Abstract

The X-ray analysis confirms dibutyltin ferrocenecarboxylate oxide (IA) adopts an oxo-bridging dimer structure mode with four anisobidentate bridging carboxylate groups as ligands and has a planar tortuous ladder geometry. IA crystallizes in the monoclinic space group $P 2_{1} / c$ with $a=1403.2(3) \mathrm{pm}, b=1309.3(3) \mathrm{pm}, c=2786.0\{6) \mathrm{pm}, \beta=102.49(3)^{\circ}$ and $\angle=2$. The structure was refined to $R=0.0508$ and $W R=0.0564$.

Keywords: Tin; Ferrocene; Carboxylate; Oxide; Crystal structure; X-ray difraction

1. Introduction

The compounds dibutyltin ferrocenecarboxylate oxide (IA) and dioctyltin ferrocenecarboxylate oxide (IB) have been synthesized and their possible structures deduced [1]. However, the final exact structure must be determined by mono-crystal X-ray diffraction. IA can be obtained as a crystal, but IB as a solid powder or like glass. This report represents the results of the X-ray diffraction of IA and detailed analyses of its structure.

2. Experimental section

The red-orange crystal for IA, grown from benzene-ethanol solution, degrades fairly rapidly when exposed to ambient conditions; this behavior is due to loss of benzene of solvation. So, a crystal of IA $(0.15 \mathrm{~mm} \times 0.20 \mathrm{~mm} \times 0.50 \mathrm{~mm})$ sealed by epoxy glue was used for the X-ray study.

Intensity data for compound IA were performed on a Rigaku AFC6S diffractometer fitted with highly oriented graphite monochromated Mo $\mathrm{K} \alpha$ radiation, $\lambda=$ 70.073 pm at ambient temperature of 296 K .8816 independent reflections ($+\boldsymbol{h},+k, \pm l$) were collected using the ω scan mode for $4^{\circ} \leq 2 \theta \leq 50^{\circ}$. During collection

[^0]of the diffraction data, the standard reflection intensity decreased by 10%, so the diffraction intensities were corrected using a decay coefficient, Lp factor and $\mathbf{a b}$ sorption.

The structure was solved by direct methods using the Siemens shelxtl plus (VMS) system and refined by a full-matrix least squares procedure. All $\mathrm{Fe}, \mathrm{Sn}, \mathrm{O}$ atoms were refined with anisotropic temperature factors. Owing to the flexibility of the butyl chains and easy loss of benzene molecules from the crystal, all of the C atoms were refined with isotropic thermal parameters. The positions of the H atoms were according to theoretical calculations, without least squares correction. The semiempirical method was made for absorption corrections.

3. Results

Crystal data for IA uniquely determined that empirical formula $\mathrm{C}_{100} \mathrm{H}_{132} \mathrm{Fe}_{4} \mathrm{O}_{10} \mathrm{Sn}_{4} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{6}$ or $\left\{\left[\mathrm{FeC}_{10} \mathrm{H}_{9}-\right.\right.$ $\left.\mathrm{COOSn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}\right)_{2} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{6}$; formula weight 2192.2 ; space group $P 2_{1} / c$; unit cell dimensions $a=$ $1403.2(3) \mathrm{pm}, \quad b=1309.3(3) \mathrm{pm}, c=2786.0(6) \mathrm{pm}, \alpha$ $=90^{\circ}, \beta=102.49(3)^{\circ}, \gamma=90^{\circ}$; volume $=4998(2) \times$ $10^{3} \mathrm{~nm}^{3} ; Z=2$; density (calc.) $1.457 \mathrm{Mg} \mathrm{m}^{-3} ; F(000)$ $=2232$; numbers of observed reflections 2305 ($I \geq$ $4.0 \sigma(i)) ;$ min. $/$ max. transmission faction $=$

Fig. 1. ORTEP plot of IA. The intermediate and the longer $\mathrm{Sn}-\mathrm{O}$ interactions ($271.0,274.0,288.8,312.2 \mathrm{pm}$) are shown as dashed lines. The benzene molecules and hydrogen atoms are omitted for the purpose of clarity.
$0.8606 / 1.0000$; final agreement factors (obs. data) $R=$ $5.08 \%, W R=5.64 \%$.

The atom labeling scheme for IA is given in the ORTEP plot of Fig. 1 and in its unit cell plot of Fig. 2, while atomic coordinates are given in Table 1. The selected bond lengths and angles are given in Table 2.

4. Discussion

The compound IA has a dimeric formulation. IA exists as a planar tortuous ladder structure which con-
tains pseudo-six and pseudo-seven coordinated tin atoms. IA can be viewed as a centrosymmetric dimer, where one half of the molecule comprises the crystallographic asymmetric unit and other half is generated by an inversion center located at the center of the oxobridging parallel quadrilateral $(\mathrm{SnO})_{2}$ ring. IA has a ladder structure rather than a staircase arrangement, as evidenced by the coplanarity of the atoms comprising the fused ring system. The atoms $\mathrm{Snl}, \mathrm{Sn} 2, \mathrm{SnlA}$, $\mathrm{Sn} 2 \mathrm{~A}, \mathrm{O} 5$ and O5A are coplanar to within $\pm 2.38 \mathrm{pm}$. The atoms $\mathrm{Snl}, \mathrm{O} 3 \mathrm{~A}, \mathrm{O5}, \mathrm{Sn} 2 \mathrm{~A}$ are coplanar to within $\pm 1.89 \mathrm{pm}$. The dihedral angle between the central and terminal four atom rings is 3.2°. So, the atoms $\mathrm{Sn} 1, \mathrm{Sn} 2$, O3, O5, $\mathrm{Sn} 1 \mathrm{~A}, \mathrm{Sn} 2 \mathrm{~A}, \mathrm{O3A}$ and O5A are coplanar (to within $\pm 1.90 \mathrm{pm})$.

As to the atoms of tin, there are apparently two types: bridging tin atoms $\mathrm{Sn} 2, \mathrm{Sn} 2 \mathrm{~A}$ and side tin atoms $\mathrm{Snl}, \mathrm{SnlA}$. The bridging tin atoms adopt a pseudo-seven coordination structure, in which the five stronger coordination bonds, $\mathrm{Sn} 2-\mathrm{C} 9 \mathrm{211(2)} \mathrm{pm}, \mathrm{Sn} 2-\mathrm{C} 13$ 207(2) pm, Sn2-O5 219.5(8) pm, Sn2-O5A 205.6(9) pm, Sn2-O3 223(1) pm, consist of a distorted trigonal bipyramid. The atoms $\mathrm{Sn} 2, \mathrm{O} 5 \mathrm{~A}, \mathrm{C} 9$ and Cl 3 are coplanar (to within $\pm 1.76 \mathrm{pm}$). The plane composed of them may be viewed as an equatorial plane of a trigonal-bipyramid. In addition, the atoms $\mathrm{Sn} 2, \mathrm{Ol}, \mathrm{O} 3$, $04,05,05 A$ are coplanar (to within $\pm 1.62 \mathrm{pm}$) and is nearly perpendicular to the equatorial plane (their dihedral angle is 89.5°). However, from the two directions facing the faces composed of $\mathrm{C} 9, \mathrm{Cl} 3, \mathrm{O} 3$ and of C 9 , $\mathrm{C13}, \mathrm{O} 5$, the O 4 and Ol approach the Sn 2 atom with a weaker long-range interaction (the distances between the two atoms are 289 pm and 312 pm respectively). The axial angle $\mathrm{O} 3-\mathrm{Sn} 2-\mathrm{O} 5$ is closed to 150.6°; the angle $\mathrm{C} 9-\mathrm{Sn} 2-\mathrm{Cl} 3$ in the equatorial plane is opened up to 133.3°.

Fig. 2. The packing plot of IA in its unit cell.

Table 1
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$) for IA

		y	z	$U_{\text {cq }}{ }^{\text {a }}$
$\mathrm{Sn}(1)$	2819(1)	4477(1)	168(1)	65(1)
$\mathrm{Sn}(2)$	5496(1)	5068(1)	611(1)	56(1)
$\mathrm{Fe}(1)$	9240(2)	6786(2)	1680(1)	75(1)
$\mathrm{Fe}(2)$	3689(2)	3208(2)	2161(1)	71(1)
$O(1)$	3552(8)	4500(9)	919(4)	79(5)
O(2)	2023(10)	4193(10)	962(4)	91(6)
O(3)	7086(9)	5427(9)	803(4)	$90(6)$
O(4)	6863(9)	5299(12)	1542(5)	114(7)
O(5)	4152(7)	4751(8)	63(3)	56(4)
Ca	2863(16)	4335(14)	1167(7)	69(6)
Cb	7417(15)	5394(15)	1248(8)	78(6)
C(1)	2454(16)	2943(15)	-31(8)	107(7)
C(2)	2773(22)	2224(25)	312(11)	181(12)
C(3)	2329(27)	1097(30)	131(14)	221(16)
C(4)	2619(51)	515(59)	412(25)	495(53)
C(5)	1947(20)	5826(19)	67(10)	143(10)
C(6)	1195(41)	5992(43)	174(19)	343(28)
C(7)	505(33)	7083(38)	157(17)	281(23)
C(8)	1065(33)	7697(36)	203(15)	283(23)
C(9)	4976(13)	6447(13)	853(7)	77(6)
C(10)	5504(18)	7335(19)	821(9)	139(9)
C(11)	5077(22)	8353(23)	1053(11)	166(11)
C(12)	5426(40)	9179(45)	984(20)	397(34)
C(13)	5627(14)	3594(13)	889(7)	82(6)
C(14)	6287(20)	2914(22)	703(10)	160(11)
C(15)	6300(26)	1735(28)	867(13)	217(15)
C(16)	$7031(40)$	1253(46)	665(19)	398(32)
C(21)	3226(13)	4404(13)	1704(6)	6\%(5)
C(22)	4168(14)	4595(14)	1970(7)	82(6)
C(23)	3187(14)	4376(14)	2524(7)	85(6)
C(24)	4150(14)	4574(14)	2481(7)	86(6)
C(25)	2611 (14)	4261(13)	2059(7)	78(6)
C(26)	3658(16)	1905(15)	1778(8)	95(7)
C(27)	4595(17)	2125(16)	2001(8)	112(8)
C(28)	4622 (16)	$2116(15)$	2495(8)	101(7)
C(29)	3691(15)	1913(14)	2552(8)	95(7)
C(30)	3049(19)	1789(16)	2089(9)	$116(8)$
C(31)	8500(13)	5485(13)	1445(6)	64(5)
C(32)	9195(14)	5638(15)	1154(8)	95(7)
C(33)	10107(16)	5652(15)	1515(8)	100(7)
C(34)	9990(14)	5528(14)	1962(7)	81(6)
C(35)	8963(14)	5431(14)	1958(7)	87(6)
C(36)	8371(18)	8003(15)	1611(8)	107(7)
C(37)	8882(17)	7917(16)	2097(9)	114(8)
C(38)	9845(17)	8004(16)	2076(9)	110(8)
C(39)	9886(17)	8142(15)	1598(8)	103(7)
C(40)	8937(18)	8119(16)	1308(9)	115(8)
C(41)	2648(16)	7182(20)	1866(9)	118(8)
C(42)	2617(16)	7245(21)	2349(10)	126(9)
C(43)	2735(18)	8163(22)	2564(10)	138(9)
C(44)	2907(15)	8973(19)	2330(9)	107(7)
C(45)	2910(16)	8978(19)	1831(9)	122(8)
C(46)	2789(18)	7999(22)	1622(10)	139(9)
C(51)	8987(27)	1797(31)	1648(12)	212(15)
C(52)	$9600(23)$	925(25)	1581(10)	169(11)
C(53)	10327(25)	960(28)	1371(11)	188(13)
C(54)	10592(22)	2009(26)	1227(10)	166(11)
C(55)	10073(22)	2775(23)	1329(10)	141(10)
C(56)	9361(26)	2706(28)	1502(11)	177(12)

[^1]The side in atoms adopt a pseudo-six coordination structure, in which the atoms SnI, O1, O3A and O5 are coplanar to within $\pm 2.10 \mathrm{pm}$; its geometry, for example for the Snl atom, can be seen as four coordination (with distances $198.7(10) \sim 213.3(26) \mathrm{pm})$ to the nearby tetrahedron of atoms $\mathrm{Ol} \mathrm{OS} \mathrm{Cl} \mathrm{C5}^{\mathrm{CL}}$, where the atoms O 2 , O3A coordinate to the side in Snl facing the faces shared by the edge defined by the atoms C1 and C5. There is stronger long-range interaction between the capped 02, O3A atoms and the side tin (Sn1) with distances 271.0 pm and 274.0 pm respectively.

In IA, all of the carboxylate ligands are anisobidenwite. The ester oxygen atoms as a bridge-oxygen coordination atom have a normal linkage ($\mathbf{S n}-\mathbf{O}$; 212.1(10) ~ $222.8(12) \mathrm{pm}$), simultaneously coordinating to an adjacent tin atom with long-range interaction (distances $274.0 \mathrm{pm}, 312.2 \mathrm{pm}$), while each of the carbonyl oxygen atoms, as terminal-oxygen coordination atoms, coordinates to the same tin atom with long-range interaction ($271.0 \mathrm{pm}, 288.8 \mathrm{pm}$; the van der Waals sum $r_{\text {vew }}\left(S_{n}\right.$ $O)=368 \mathrm{pm}$ [2D. However, the ester bond and carbonyl bond in carboxylate ligand bonding to the bridging tin atom are more averaged ($\Delta=\mathrm{Cb}-\mathbf{0 4}-\mathrm{Cb}-03=2 \mathrm{pm}$) than to the side tin atom ($\Delta=\mathbf{C a}-\mathbf{O 1}-\mathbf{C a}-\mathbf{O 2}=$ 11 pm).

The Cp rings in the same ferrocenyl group are eclipsed and parallel to each other, between which the dihedral angles are $0.7 \sim 1.4^{\circ}$. The Cp rings in different ferrocenyl groups are nearly parallel to each other, between which the dihedral angles are $8.6 \sim 10.7^{\circ}$.

The solvate benzene molecules embed in the unit cell with dihedral angles to the $\mathrm{Sn}_{2} \mathrm{O}_{2}$ core of 113.6° for C41~C46 and 89.5° for C51~ C56. The dihedral angle between the planes of two kinds of benzene molecule is 53.7°.

Since the atoms Sn1, SniA, Sn2, O1~05, O5A, $\mathrm{Ca}, \mathrm{Cb}, \mathrm{C} 21 \sim \mathrm{C} 23$ and $\mathrm{C} 31 \sim \mathrm{C} 33$ are coplanar to within $\pm 9.24 \mathrm{pm}$, the main skeleton of IA, in general, has a planar structure, except for the butyl groups. The oxo-bridging core in IA has a parallel quadrilateral geometry with two unequal length $\mathrm{Sn}-\mathrm{O}$ bonds: $219.5(8) \mathrm{pm}, 205.6(9) \mathrm{pm}$; their difference $\Delta=13.9 \mathrm{pm}$, $\angle \mathrm{O}-\mathrm{Sn}-\mathrm{O} 74.1(4)^{\circ}$, is similar to many other dialkyltin oxides ($\mathrm{Sn}-\mathbf{O} 217 \mathrm{pm}[11]$ and $199 \mathrm{pm}[6,11], \Delta-3 \mathrm{pm}$ [12] to $16 \mathrm{pm}[6,11], \operatorname{O}-\mathrm{Sn}-071.8^{\circ}[11], \mathrm{ca} .77 .5^{\circ}$ [7]. However, the geometric positions about the side-tin atoms may differ with different coordinating groups; also, they may be out of the oxo-bridging core or become tortured in some degree in the core plane. Therefore, the molecular geometry of the main skeleton about this kind of compound may transform from ladder mode into a tortuous ladder mode [3-12] or into staircase mode [13].

The ${ }^{19} \mathrm{Sn}$ NMR spectrum of IA has two signals; this shows that the structures of the two types of tin atom in

Table 2
Selected bond bond lengths (pm) and bond angles (deg) for IA

Bond lengths							
$\mathrm{Snl-Ol}$	212.1(10)	Sn2-03	222.8(12)	$\mathrm{Ol}-\mathrm{Ca}$	132(3)	Cb-C31	151(3)
Snl-O5	198.7(10)	$\mathrm{Sn} 2-\mathrm{O} 5$	219.5(8)	O2-Ca	121(2)	$\mathrm{Snl}-\mathrm{O} 2$	271.0(14)
Snl -Cl	212(2)	Sn2-C9	211.2(18)	$\mathrm{Ca}-\mathrm{C} 21$	148(3)	Sn1-O3A	274.0(13)
Sn1-C5	213(3)	$\mathrm{Sn} 2-\mathrm{Cl} 3$	207.2(17)	O3-Cb	123(2)	$\mathrm{Sn} 2-\mathrm{Ol}$	312.3(12)
		Sn2-O5A	205.6(9)	O4-Cb	125(3)	Sn2-O4	288.8(12)
C1-C2	135(4)	C2-C3	164(5)	C3-C4	$110(8)$	C5-C6	118(7)
C6-C7	172(8)	C7-C8	111(7)	C9-C10	139(3)	C10-C11	165(4)
Cl1-Cl2	122(7)	C13-C14	146(4)	C14-C15	161(5)	C15-C16	142(7)
C-C							
in Cp		C_{21-25}	138(2) ~ 146(3)	C_{26} - 30	$135(4) \sim 141(3)$		
		C_{31} - 35	$130(3) \sim 145(3)$	C_{36-40}	$129(4) \sim 140(3)$		
in benzene		$C_{+1}-46$	$130(4) \sim 140(4)$	$\mathrm{C}_{51}-56$	$120(5) \sim 150(5)$		
$\mathrm{Fel}-\mathrm{C}_{31} \sim 40$	$199 \sim 203(2)$	$\mathrm{Fe} 2-\mathrm{C}_{21}-30$	$201 \sim 206(2)$				
Bond angles							
O1-Snl-05	82.4(4)	O3-Sn2-05		150.6(4)	O1-Sn2-03		150.9(4)
Ol-Snl-O3A	148.9(4)	O3-Sn2-C9		98.1(6)	O1-Sn2-04		103.2(3)
$\mathrm{Ol}-\mathrm{Snl}-\mathrm{Cl}$	108.1(6)	O3-Sn2-C13		96.0(6)	O1-Sn2-O5A		132.4(3)
O1-Snl-C5	105.1(7)	C9-Sn2-C13		133.3(8)	O4-Sn2-C9		80.3(5)
O5-SnI-O3A	66.3(3)	O5-Sn2-C9		94.5(5)	$\mathrm{O} 4-\mathrm{Sn} 2-\mathrm{Cl} 3$		$77.0 \times 6)$
O5-Snl-C5	111.3(8)	$\mathrm{O} 5-\mathrm{Sn} 2-\mathrm{Cl} 3$		94.4(5)	O4-Sn2-03		47.7(4)
$\mathrm{Cl}-\mathrm{Snl}-\mathrm{C} 5$	130.7(9)	O5-Sn2-O5A		74.1 (4)	O4-Sn2-05		161.5(4)
Cl-Snl-O3A	81.1(7)	O3-Sn2-O5A		76.6(4)	O4-Sn2-05a		124.3(4)
C5-Snl-O3A	88.9(8)	O9-Sn2-O5A		$111.1(6)$	Snl-O1-Ca		105(1)
O2-Snl-C5	84.0(8)	$\mathrm{C} 13-\mathrm{Sn} 2-\mathrm{O} \mathrm{A}^{\text {}}$		$115.4(6)$	$\mathrm{Sn} 1-\mathrm{O5}-\mathrm{Sn} 2$		128.8(4)
O2-Snl-O3A	158.2(4)	$\mathrm{O} 1-\mathrm{Sn} 2-\mathrm{C} 9$		74.5(6)	$\mathrm{Snl}-\mathrm{OS}-\mathrm{Sn} 2 \mathrm{~A}$		125.1(4)
O2-Snl-O5	135.4(4)	$\mathrm{O} 1-\mathrm{Sn} 2-\mathrm{C} 13$		$71.8(6)$	Sn2-O5-Sn2A		105.9(4)
O2-Snl-O1	52.8(4)	O1-Sn2-O5		58.3(3)	Sn2-O3-Cb		$112(1)$
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O} 2$	122(2)	O1-Ca-C21		113(2)	O2-Ca-C21		125(2)
O3-Cb-O4	121(2)	O3-Cb-C31		120(2)	O4-Cb-C31		119(2)
Snl-C1-C2	117(2)	C1-C2-C3		111(2)	C2-C3-C4		110(5)
Snl-C5-C6	130(3)	C5-C6-C7		133(5)	C6-C7-C8		103(4)
Sn2-C9-C10	118(2)	C9-C10-C11		114(2)	C10-C11-C12		118(4)
Sn2-C13-C14	117(2)	C13-C14-C15		117(3)	C14-C15-C16		106(4)
C31-Fe1-C32	40.0(8)	C32-C31-C36		90.3 (9)	Ca-C21-C22		129(2)
$\mathrm{Ca}-\mathrm{C} 21-\mathrm{C} 23$	124(2)	Cb-C31-C32		125(2)	Cb-C31-C35		124(2)
C21-C22-C24	108(2)	C42-C41-C46		$120(2)$			

Numbers in parentheses are estimated standard deviations. Atoms are labeled to agree with Figs. 1 and 2.
the solid state are still retained in solution. The signal at $\mathbf{- 2 2 2 . 3} \mathrm{ppm}$ is assigned to the pseudo-seven coordination bridging tin (or bicapped trigonal bipyramid tin) and at -217.3 ppm to the pseudo-six coordination side tin (or bicapped tetrahedron tin).

Acknowledgements

The support for this research by the Fund of School of Science, Tsinghua University is gratefully acknowledged. We also thank the support in part by the Analysis Fund of Beijing Zhongguancun Associated Center of Analysis and Measurement.

References

[1] J.X. Tao and W.J. Xiao, J. Organomet. Chem., in press.
[2] A. Bondi, J. Phys. Chem., 68 (1964) 441.
[3] J.F. Vollano, R.O. Day and R.R. Holmes, Organometallics, 3 (1984) 745.
[4] V. Chandrasekhar, R.O. Day, J.M. Holmes and R.R. Holmes, Inorg. Chem., 27 (1988) 958.
[5] G.K. Sandhu, N. Sharma and E.R.T. Tiekink, J. Organomet. Chem., 403 (1991) 119.
[6] Y.M. Chow, Inorg. Chem., 10 (1971) 673.
[7] R. Faggiani, J.P. Johnson, I.D. Brown and T. Birchall, Acta Crystallogr. Sect. B:, 34 (1978) 3743.
[8] R. Graziani, J. Organomet. Chem., 125 (1977) 43.
[9] P.G. Harrison, M.J. Begley and K.C. Molloy, J. Organomet. Chem., 186 (1980) 213.
[10] H. Puff, E. Friedrichs and F. Visel, Z. Anorg. Allg. Chem., 477 (1981) 50.
[11] H. Puff, I. Bung, E. Friedrichs and A. Jansen, J. Organomet. Chem., 254 (1983) 23.
[12] G. Valle, V. Peruzzo, G. Tagliavini and P. Ganis, J. Organomet. Chem., 276 (1984) 325.
[13] R. Okawara, Proc. Chem. Soc. London, (1961) 383.

[^0]: ${ }^{*}$ Corresponding author.

[^1]: Equivalent isotropic U defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

